165 lines
4.1 KiB
JavaScript
165 lines
4.1 KiB
JavaScript
/**
|
|
* Portions Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*
|
|
* @flow strict
|
|
* @format
|
|
*/
|
|
|
|
/**
|
|
* BezierEasing - use bezier curve for transition easing function
|
|
* https://github.com/gre/bezier-easing
|
|
* @copyright 2014-2015 Gaëtan Renaudeau. MIT License.
|
|
*/
|
|
|
|
'use strict';
|
|
|
|
// These values are established by empiricism with tests (tradeoff: performance VS precision)
|
|
const NEWTON_ITERATIONS = 4;
|
|
const NEWTON_MIN_SLOPE = 0.001;
|
|
const SUBDIVISION_PRECISION = 0.0000001;
|
|
const SUBDIVISION_MAX_ITERATIONS = 10;
|
|
|
|
const kSplineTableSize = 11;
|
|
const kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
|
|
|
|
const float32ArraySupported = typeof Float32Array === 'function';
|
|
|
|
function A(aA1: number, aA2: number) {
|
|
return 1.0 - 3.0 * aA2 + 3.0 * aA1;
|
|
}
|
|
function B(aA1: number, aA2: number) {
|
|
return 3.0 * aA2 - 6.0 * aA1;
|
|
}
|
|
function C(aA1: number) {
|
|
return 3.0 * aA1;
|
|
}
|
|
|
|
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
|
|
function calcBezier(aT: number, aA1: number, aA2: number) {
|
|
return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
|
|
}
|
|
|
|
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
|
|
function getSlope(aT: number, aA1: number, aA2: number) {
|
|
return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
|
|
}
|
|
|
|
function binarySubdivide(
|
|
aX: number,
|
|
_aA: number,
|
|
_aB: number,
|
|
mX1: number,
|
|
mX2: number,
|
|
) {
|
|
let currentX,
|
|
currentT,
|
|
i = 0,
|
|
aA = _aA,
|
|
aB = _aB;
|
|
do {
|
|
currentT = aA + (aB - aA) / 2.0;
|
|
currentX = calcBezier(currentT, mX1, mX2) - aX;
|
|
if (currentX > 0.0) {
|
|
aB = currentT;
|
|
} else {
|
|
aA = currentT;
|
|
}
|
|
} while (
|
|
Math.abs(currentX) > SUBDIVISION_PRECISION &&
|
|
++i < SUBDIVISION_MAX_ITERATIONS
|
|
);
|
|
return currentT;
|
|
}
|
|
|
|
function newtonRaphsonIterate(
|
|
aX: number,
|
|
_aGuessT: number,
|
|
mX1: number,
|
|
mX2: number,
|
|
) {
|
|
let aGuessT = _aGuessT;
|
|
for (let i = 0; i < NEWTON_ITERATIONS; ++i) {
|
|
const currentSlope = getSlope(aGuessT, mX1, mX2);
|
|
if (currentSlope === 0.0) {
|
|
return aGuessT;
|
|
}
|
|
const currentX = calcBezier(aGuessT, mX1, mX2) - aX;
|
|
aGuessT -= currentX / currentSlope;
|
|
}
|
|
return aGuessT;
|
|
}
|
|
|
|
export default function bezier(
|
|
mX1: number,
|
|
mY1: number,
|
|
mX2: number,
|
|
mY2: number,
|
|
): (x: number) => number {
|
|
if (!(mX1 >= 0 && mX1 <= 1 && mX2 >= 0 && mX2 <= 1)) {
|
|
throw new Error('bezier x values must be in [0, 1] range');
|
|
}
|
|
|
|
// Precompute samples table
|
|
const sampleValues = float32ArraySupported
|
|
? new Float32Array(kSplineTableSize)
|
|
: new Array<number>(kSplineTableSize);
|
|
if (mX1 !== mY1 || mX2 !== mY2) {
|
|
for (let i = 0; i < kSplineTableSize; ++i) {
|
|
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
|
|
}
|
|
}
|
|
|
|
function getTForX(aX: number) {
|
|
let intervalStart = 0.0;
|
|
let currentSample = 1;
|
|
const lastSample = kSplineTableSize - 1;
|
|
|
|
for (
|
|
;
|
|
currentSample !== lastSample && sampleValues[currentSample] <= aX;
|
|
++currentSample
|
|
) {
|
|
intervalStart += kSampleStepSize;
|
|
}
|
|
--currentSample;
|
|
|
|
// Interpolate to provide an initial guess for t
|
|
const dist =
|
|
(aX - sampleValues[currentSample]) /
|
|
(sampleValues[currentSample + 1] - sampleValues[currentSample]);
|
|
const guessForT = intervalStart + dist * kSampleStepSize;
|
|
|
|
const initialSlope = getSlope(guessForT, mX1, mX2);
|
|
if (initialSlope >= NEWTON_MIN_SLOPE) {
|
|
return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
|
|
} else if (initialSlope === 0.0) {
|
|
return guessForT;
|
|
} else {
|
|
return binarySubdivide(
|
|
aX,
|
|
intervalStart,
|
|
intervalStart + kSampleStepSize,
|
|
mX1,
|
|
mX2,
|
|
);
|
|
}
|
|
}
|
|
|
|
return function BezierEasing(x: number): number {
|
|
if (mX1 === mY1 && mX2 === mY2) {
|
|
return x; // linear
|
|
}
|
|
// Because JavaScript number are imprecise, we should guarantee the extremes are right.
|
|
if (x === 0) {
|
|
return 0;
|
|
}
|
|
if (x === 1) {
|
|
return 1;
|
|
}
|
|
return calcBezier(getTForX(x), mY1, mY2);
|
|
};
|
|
}
|