amis-rpc-design/node_modules/react-native/Libraries/Animated/bezier.js
2023-10-07 19:42:30 +08:00

165 lines
4.1 KiB
JavaScript

/**
* Portions Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
* @flow strict
* @format
*/
/**
* BezierEasing - use bezier curve for transition easing function
* https://github.com/gre/bezier-easing
* @copyright 2014-2015 Gaëtan Renaudeau. MIT License.
*/
'use strict';
// These values are established by empiricism with tests (tradeoff: performance VS precision)
const NEWTON_ITERATIONS = 4;
const NEWTON_MIN_SLOPE = 0.001;
const SUBDIVISION_PRECISION = 0.0000001;
const SUBDIVISION_MAX_ITERATIONS = 10;
const kSplineTableSize = 11;
const kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
const float32ArraySupported = typeof Float32Array === 'function';
function A(aA1: number, aA2: number) {
return 1.0 - 3.0 * aA2 + 3.0 * aA1;
}
function B(aA1: number, aA2: number) {
return 3.0 * aA2 - 6.0 * aA1;
}
function C(aA1: number) {
return 3.0 * aA1;
}
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
function calcBezier(aT: number, aA1: number, aA2: number) {
return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
}
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
function getSlope(aT: number, aA1: number, aA2: number) {
return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
}
function binarySubdivide(
aX: number,
_aA: number,
_aB: number,
mX1: number,
mX2: number,
) {
let currentX,
currentT,
i = 0,
aA = _aA,
aB = _aB;
do {
currentT = aA + (aB - aA) / 2.0;
currentX = calcBezier(currentT, mX1, mX2) - aX;
if (currentX > 0.0) {
aB = currentT;
} else {
aA = currentT;
}
} while (
Math.abs(currentX) > SUBDIVISION_PRECISION &&
++i < SUBDIVISION_MAX_ITERATIONS
);
return currentT;
}
function newtonRaphsonIterate(
aX: number,
_aGuessT: number,
mX1: number,
mX2: number,
) {
let aGuessT = _aGuessT;
for (let i = 0; i < NEWTON_ITERATIONS; ++i) {
const currentSlope = getSlope(aGuessT, mX1, mX2);
if (currentSlope === 0.0) {
return aGuessT;
}
const currentX = calcBezier(aGuessT, mX1, mX2) - aX;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
}
export default function bezier(
mX1: number,
mY1: number,
mX2: number,
mY2: number,
): (x: number) => number {
if (!(mX1 >= 0 && mX1 <= 1 && mX2 >= 0 && mX2 <= 1)) {
throw new Error('bezier x values must be in [0, 1] range');
}
// Precompute samples table
const sampleValues = float32ArraySupported
? new Float32Array(kSplineTableSize)
: new Array<number>(kSplineTableSize);
if (mX1 !== mY1 || mX2 !== mY2) {
for (let i = 0; i < kSplineTableSize; ++i) {
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
}
}
function getTForX(aX: number) {
let intervalStart = 0.0;
let currentSample = 1;
const lastSample = kSplineTableSize - 1;
for (
;
currentSample !== lastSample && sampleValues[currentSample] <= aX;
++currentSample
) {
intervalStart += kSampleStepSize;
}
--currentSample;
// Interpolate to provide an initial guess for t
const dist =
(aX - sampleValues[currentSample]) /
(sampleValues[currentSample + 1] - sampleValues[currentSample]);
const guessForT = intervalStart + dist * kSampleStepSize;
const initialSlope = getSlope(guessForT, mX1, mX2);
if (initialSlope >= NEWTON_MIN_SLOPE) {
return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
} else if (initialSlope === 0.0) {
return guessForT;
} else {
return binarySubdivide(
aX,
intervalStart,
intervalStart + kSampleStepSize,
mX1,
mX2,
);
}
}
return function BezierEasing(x: number): number {
if (mX1 === mY1 && mX2 === mY2) {
return x; // linear
}
// Because JavaScript number are imprecise, we should guarantee the extremes are right.
if (x === 0) {
return 0;
}
if (x === 1) {
return 1;
}
return calcBezier(getTForX(x), mY1, mY2);
};
}